Xargin

If you don't keep moving, you'll quickly fall behind

一些问题的答案

知乎上有一个问题,有哪些优秀的 Go 面试题,其中有一个高赞答案很[敏感词],从大多数问题上可以看出作者想要问别人什么,对其它应聘者的要求是对常见的性能指标要敏感。 不过我觉得,即使是做优化,很多时候也应该是去做整体优化,而不是在所有地方全部抠细节,那我们程序全用汇编+优化指令写得了。 当然这么说也很空洞,我简单整理一下这些问题的答案,可能其中有些疏漏,如果读到这篇文章的你在某些问题的答案上有不同的见解,欢迎在评论里讨论和补充~ 1. 1.9/1.10中,time.Now()返回的是什么时间?这样做的决定因素是什么? 是想考 monotonic time 和 wall

微服务的灾难-康威定律和 KPI 冲突

架构师们常讲的设计定律之中最为重要的是康威定律,康威定律的定义: > Conway's law is an adage named after computer programmer Melvin Conway, who introduced the idea in 1967. It states that. organizations which design systems ... are constrained to produce designs which are

微服务的灾难-最终一致

现在的架构师总喜欢把最终一致挂在嘴上,好像最终一致是解决分布式场景下数据一致问题的金科玉律。事实上又怎么样呢? 事实上的这些人嘴里的最终一致,往往都是最终不一致。在多个系统之间进行数据传递时,无非通过 RPC 或者异步消息。RPC 能保证一致性么?当 B 系统需要 A 系统提供数据时,想要达到一致的效果,那么在 A call B 时发生失败,那么必须让 A 中的逻辑终止。这样才能够使 B 中的状态或数据与 A 中的完全一致。这样实际上需要让 A 和

微服务的灾难-依赖地狱

微服务模式下,我们的系统中往往需要集成进各种各样的 SDK,这些 SDK 部分来自于非功能性的业务需求,例如 bool 表达式解析,http router,日期时间解析;一部分来自于对公司内基础设施的绑定,如 MQ Client,配置下发 Client,其它服务的调用 SDK 等等。 一般的观点会认为公司内的 SDK 是较为可靠的,而开源库的稳定性不可控,所以人们在升级公司内部库时往往较为激进,开源库版本升级较为保守。具体到 Go 语言,公司内的库,我们可能会直接指定依赖的版本为 master(

微服务的灾难-拆分

在之前写事故驱动开发的时候,提到过,在企业中的项目进行开发时,只要是自己方便,一个人可以用拆分和收敛同时作为自己的标准。所以大家都是双标狗。 目前业界的微服务方法论一般也没有固定的套路,比如在 《Building Microservice》 一书中,作者也讲到了服务之间协作的时候,可以选择编排(orchestration)和协同(choreography)这两种方式来对服务进行架构。所以在拆分阶段,就没有什么硬性的标准了,每个公司可能风格都有差别,并且都可以阐述出自己的条条以支持自己的架构是“正确”的。 显然,这件事情没有绝对正确的解法。无论哪种拆分方式,都会遇到业务边界的问题。在大企业中,顶着“架构师”头衔的这些架构师们根本就不会管任何实现上的细节。相对较大的业务需求,一般也是一线的