slice 和 array
要说 slice,那实在是太让人熟悉了,从功能上讲 slice 支持追加,按索引引用,按索引范围生成新的 slice,自动扩容等,和 C++ 或 Java 中的 Vector 有些类似,但也有一些区别。
不过 Go 里的 slice 还有一个底层数组的概念,这一点和其它语言不同。
runtime/slice.go
type slice struct {
array unsafe.Pointer
len int
cap int
}
slice 的底层结构定义非常直观,指向底层数组的指针,当前长度 len 和当前 slice 的 cap。
数据指针不一定就是指向底层数组的首部,也可以指腰上:
[]int{1,3,4,5}
struct {
array unsafe.Pointer --------------+
len int |
cap int |
} |
|
v
+------|-------|------|------+-----+
| | 1 | 3 | 4 | 5 |
| | | | | |
+------|-------|------|------+-----+
[5]int
我们可以轻松地推断出,是可以有多个 slice 指向同一个底层数组的。一般情况下,一个 slice 的 cap 取决于其底层数组的长度。如果在元素追加过程中,底层数组没有更多的空间了,那么这时候就需要申请更大的底层数组,并发生数据拷贝。这时候的 slice 的底层数组的指针地址也会发生改变,务必注意。
len 和 cap
Go 语言虽然将 len 和 cap 作为 slice 和 array 附带的 builtin 函数,但对这两个函数的调用实际上最终会被编译器直接计算出结果,并将值填到代码运行的位置上。所以 len 和 cap 更像是宏一样的东西,在 slice 和 array 的场景,会被直接展开为 sl->len 和 sl->cap 这样的结果。
源码分析
形如:
var a = make([]int, 10, 20)
的代码,会被编译器翻译为 runtime.makeslice。
func makeslice(et *_type, len, cap int) slice {
maxElements := maxSliceCap(et.size)
if len < 0 || uintptr(len) > maxElements {
panic(errorString("makeslice: len out of range"))
}
if cap < len || uintptr(cap) > maxElements {
panic(errorString("makeslice: cap out of range"))
}
p := mallocgc(et.size*uintptr(cap), et, true)
return slice{p, len, cap}
}
如果是
var a = new([]int)
这样的代码,则会被翻译为:
func newobject(typ *_type) unsafe.Pointer {
return mallocgc(typ.size, typ, true)
}
实在是太简单了,没啥可说的。mallocgc 函数会根据申请的内存大小,去对应的内存块链表上找合适的内存来进行分配,是 Go 自己改造的 tcmalloc 那一套。
内存拷贝:
func slicecopy(to, fm slice, width uintptr) int {
if fm.len == 0 || to.len == 0 {
return 0
}
n := fm.len
if to.len < n {
n = to.len
}
if width == 0 {
return n
}
size := uintptr(n) * width
if size == 1 { // common case worth about 2x to do here
// TODO: is this still worth it with new memmove impl?
*(*byte)(to.array) = *(*byte)(fm.array) // known to be a byte pointer
} else {
memmove(to.array, fm.array, size)
}
return n
}
最终最关键的就是 memmove,所有平台的 memmove 都是用汇编实现的,每个平台会针对 memmove 的目标的长度,选择对应平台的优化指令来进行内存移动。比如 intel 平台就有大量的 VMOVDQU,VMOVDQA 指令。不过别人都帮我们实现好了,大概瞟一眼就行,这里截个片段:
.... 前面有很多看不懂的代码
VMOVDQU -0x40(SI), Y1
VMOVDQU -0x60(SI), Y2
VMOVDQU -0x80(SI), Y3
SUBQ $0x80, SI
....总之就是弃疗
VMOVNTDQ Y0, -0x20(DI)
VMOVNTDQ Y1, -0x40(DI)
VMOVNTDQ Y2, -0x60(DI)
....后面也有很多看不懂的代码
逻辑上稍微有点复杂的就只有 growslice,在对 slice 执行 append 操作时,如果 cap 不够用了,会导致 slice 扩容:
func growslice(et *_type, old slice, cap int) slice {
if raceenabled {
callerpc := getcallerpc()
racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice))
}
if msanenabled {
msanread(old.array, uintptr(old.len*int(et.size)))
}
if et.size == 0 {
if cap < old.cap {
panic(errorString("growslice: cap out of range"))
}
// append should not create a slice with nil pointer but non-zero len.
// We assume that append doesn't need to preserve old.array in this case.
return slice{unsafe.Pointer(&zerobase), old.len, cap}
}
newcap := old.cap
doublecap := newcap + newcap
if cap > doublecap {
newcap = cap
} else {
if old.len < 1024 {
newcap = doublecap
} else {
// Check 0 < newcap to detect overflow
// and prevent an infinite loop.
for 0 < newcap && newcap < cap {
newcap += newcap / 4
}
// Set newcap to the requested cap when
// the newcap calculation overflowed.
if newcap <= 0 {
newcap = cap
}
}
}
var overflow bool
var lenmem, newlenmem, capmem uintptr
const ptrSize = unsafe.Sizeof((*byte)(nil))
switch et.size {
case 1:
lenmem = uintptr(old.len)
newlenmem = uintptr(cap)
capmem = roundupsize(uintptr(newcap))
overflow = uintptr(newcap) > _MaxMem
newcap = int(capmem)
case ptrSize:
lenmem = uintptr(old.len) * ptrSize
newlenmem = uintptr(cap) * ptrSize
capmem = roundupsize(uintptr(newcap) * ptrSize)
overflow = uintptr(newcap) > _MaxMem/ptrSize
newcap = int(capmem / ptrSize)
default:
lenmem = uintptr(old.len) * et.size
newlenmem = uintptr(cap) * et.size
capmem = roundupsize(uintptr(newcap) * et.size)
overflow = uintptr(newcap) > maxSliceCap(et.size)
newcap = int(capmem / et.size)
}
if cap < old.cap || overflow || capmem > _MaxMem {
panic(errorString("growslice: cap out of range"))
}
var p unsafe.Pointer
if et.kind&kindNoPointers != 0 {
p = mallocgc(capmem, nil, false)
memmove(p, old.array, lenmem)
// The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length).
// Only clear the part that will not be overwritten.
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
} else {
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
p = mallocgc(capmem, et, true)
if !writeBarrier.enabled {
memmove(p, old.array, lenmem)
} else {
for i := uintptr(0); i < lenmem; i += et.size {
typedmemmove(et, add(p, i), add(old.array, i))
}
}
}
return slice{p, old.len, newcap}
}
扩容时会判断 slice 的 cap 是不是已经大于 1024,如果在 1024 之内,会按二倍扩容。超过的话就是 1.25 倍扩容了。
slice 扩容必然会导致内存拷贝,如果是性能敏感的系统中,尽可能地提前分配好 slice 是较好的选择。
var arr = make([]int, 0, 10)
值还是引用传递
网上有很多鬼扯的结论说 Go 的 slice 是按引用传递的,证据是类似下面这样的代码:
func main() {
var a = make([]int, 10)
fmt.Println(a)
}
func doSomeHappyThings(sl []int) {
if len(sl) > 0 {
sl[0] = 1
}
}
把 a 传入到 doSomeHappyThings,然后 a 的第一个元素就被修改了,进而认为在 Go 中,slice 是引用传递的。
但实际上并不是这样的,从汇编层面来讲,Go 的 slice 实际上是把三个参数传到函数内部了,这就类似于我们写一段 c 代码:
void doSomeHappyThings(int * arr, int len, int cap) {
if(len > 0) {
arr[0] = 1
}
}
所以如果你在函数内对这个 slice 进行 append 时导致了 slice 的扩容,那理论上外部是不受影响的,哪怕不扩容,也可能只影响底层数组,而不影响传入的 slice。举个例子:
func main() {
var arr = make([]int,0,10)
doSomeHappyThings(arr)
fmt.Println(arr, len(arr), cap(arr), "after return")
}
func doSomeHappyThings(arr []int) {
arr = append(arr, 1)
fmt.println(arr, "after append")
}
脏活编译器帮你做了一些,但也就导致有些结论不那么直观了。
当然,你可以尝试用汇编来写一个处理 slice 的函数。
a.s:
#include "textflag.h"
// func sum(sl []int64) int64
TEXT ·sum(SB),NOSPLIT, $0-32
MOVQ $0, SI
MOVQ sl+0(FP), BX // &sl[0], addr of the first elem
MOVQ sl+8(FP), CX // len(sl)
INCQ CX
start:
DECQ CX // CX--
JZ done
ADDQ (BX), SI // SI += *BX
ADDQ $8, BX // 指针移动
JMP start
done:
// 返回地址是 24 是怎么得来的呢?
// 可以通过 go tool compile -S math.go 得知
// 在调用 sum1 函数时,会传入三个值,分别为:
// slice 的首地址、slice 的 len, slice 的 cap
// 不过我们这里的求和只需要 len,但 cap 依然会占用参数的空间
// 就是 16(FP)
MOVQ SI, ret+24(FP)
RET
a.go:
package main
import "fmt"
func sum(s []int64) int64
func main() {
arr := []int64{1, 2, 3, 4, 10}
sux := sum(arr)
fmt.Println(sux)
}